How (and why) wood changes over time

dennisg
Posts: 0
Joined: Mon Oct 12, 2009 10:34 am
Status: Offline

Sun Jul 04, 2010 11:26 am

We've had a few threads on this topic in the past. Not too long ago I posted a response by Bob Taylor to a question about how wood changes over time.

Believing that there's more to be said on the topic, Acoustic Guitar magazine had this to say:

A guitar's reaction to humidity, hardening of glue and finishes, and the vibrations produced by playing contributes to its tonal metamorphosis. Changes to the wood itself are also likely to be contributing factors, though this remains controversial among some players. Luthiers and scientists studying wood have a number of theories about what happens as instruments age; unfortunately there has not been much definitive study to absolutely identify the causes of the tonal changes that most agree do happen with age.

Top woods like spruce, cedar, and redwood have resins that harden, as well as volatile organic compounds (VOCs) that evaporate slowly with age–changes that can be accelerated with heat (this is also true for the woods used for backs and sides, but they contribute less to tone than the top woods). The hardening of resins will affect the flexibility of the wood, making it slightly stiffer, while the loss of VOCs will make the wood less dense. These changes tend to favor high-frequency response and how "fast" or sensitive the instrument feels and sounds.

Wood is primarily made up of cellulose fibers in a matrix of lignin and a sugar-like compound called hemicellulose . As wood ages, the hemicellulose migrates out of the wood, regardless of any vibrations it has experienced. As it does so, the wood loses strength and stiffness, but it also loses weight in even greater proportion to the loss of stiffness. The net result is an increase in the stiffness-to-weight ratio. As long as the wood retains enough stiffness and strength to withstand string tension, there will be a net improvement in responsiveness. There are several heat treatments (separate from kiln drying), as well as an enzyme process for removing hemicellulose from wood, that are used to make better-sounding tops. These treatments are usually done before the tops are glued up, so any changes will take place before final dimensioning.

The third change is likely akin to metal fatigue, but in our case, it's wood fatigue. Guitars vibrate in patterns that define areas of little motion called antinodes and other areas of great relative motion called nodes . You can think of these as hinges in the wood that allow certain patterns of vibration at various frequencies. Constant vibration can subtly weaken the hinge lines, allowing for greater motion, and these effects are most noticeable at lower frequencies—the bass region of guitar tone. Processes that apply artificial vibrations to the guitar are designed to accelerate this aging process, and some luthiers and players have noted the changes that can take place when putting guitars near loudspeakers for extended periods of time.

So there are two possible effects that might affect high-frequency response and one that seems to increase bass response, and this tracks with the changes that many musicians and luthiers hear as a guitar ages. "More responsive to touch," "better low end," and "better harmonic response" are all commonly reported effects.


BigBear
Posts: 0
Joined: Sat Mar 21, 2009 11:02 am
Status: Offline

Sun Jul 04, 2010 11:49 am

Dennis- absolutely the best discussion on this topic I have ever read. Thanks for providing the scientific basis for what guitarists have always known, or at least suspected for a long, long time! :cheer:


haoli25
Posts: 0
Joined: Thu Mar 12, 2009 7:06 am
Status: Offline

Sun Jul 04, 2010 1:37 pm

Great info, Dennis. Thanks for sharing.




Bill Image


tovo
Posts: 0
Joined: Wed Sep 09, 2009 4:35 pm
Status: Offline

Sun Jul 04, 2010 2:14 pm

I'd certainly be very interested in increasing my stiffness to weight ratio. Other than that observation, I thought it was a very interesting article overall. Thanks Dennis.


cosmicmechanic
Posts: 0
Joined: Sat Apr 04, 2009 8:39 am
Status: Offline

Sun Jul 04, 2010 10:18 pm

This is scientific? Harumph! I'm still waiting for the study using "placebo" guitars (if you can imagine that).

Just kidding, really interesting article, Dennis!

Pierre


User avatar
neverfoundthetime
Posts: 48
Joined: Sat Aug 01, 2009 2:14 pm
Status: Offline

Wed Jul 07, 2010 8:41 am

Improving stiffness to weight ratios and placebo guitars.... man I was missing this site last few days! Thanks Dennis, I love this kind of information.

And Tony.... I think the correct correlation "down under" is stiffness to wait! ;-)
Nice to share a laugh with you folks!


Post Reply Previous topicNext topic